摘要翻译:
我们引入了一个jeu de taquin理论来增加表,扩展了标准Young表[Sch\'{u}tzenberger'77]的基本工作。我们利用这一理论给出了Grassmannians的K-理论Schubert演算的一个新的组合规则,为[Buch'02]等人的规则提供了一个替代。这个规则自然地推广给出了任何微小标志类G/P的猜想根系一致规则,扩展了[Thomas-Yong'06]。我们也给出了Fomin、Haiman、Schensted和Sch\'{u}tzenberger的类似结果。
---
英文标题:
《A jeu de taquin theory for increasing tableaux, with applications to
K-theoretic Schubert calculus》
---
作者:
Hugh Thomas, Alexander Yong
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We introduce a theory of jeu de taquin for increasing tableaux, extending fundamental work of [Sch\"{u}tzenberger '77] for standard Young tableaux. We apply this to give a new combinatorial rule for the K-theory Schubert calculus of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the rules of [Buch '02] and others. This rule naturally generalizes to give a conjectural root-system uniform rule for any minuscule flag variety G/P, extending [Thomas-Yong '06]. We also present analogues of results of Fomin, Haiman, Schensted and Sch\"{u}tzenberger.
---
PDF链接:
https://arxiv.org/pdf/0705.2915


雷达卡



京公网安备 11010802022788号







