摘要翻译:
利用动态规划方法研究了一般效用函数的效用最大化问题。我们考虑了一个不完全金融市场模型,其中资产价格的动态是用一个$R^D$值的连续半鞅来描述的。在一定的正则性假设下,我们导出了与原始问题直接相关的倒向随机偏微分方程,并证明了该策略是最优的当且仅当相应的财富过程满足一定的正向随机偏微分方程。作为例子,考虑了幂、指数和对数效用的情况。
---
英文标题:
《Backward Stochastic PDEs related to the utility maximization problem》
---
作者:
M. Mania and R. Tevzadze
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
We study utility maximization problem for general utility functions using dynamic programming approach. We consider an incomplete financial market model, where the dynamics of asset prices are described by an $R^d$-valued continuous semimartingale. Under some regularity assumptions we derive backward stochastic partial differential equation (BSPDE) related directly to the primal problem and show that the strategy is optimal if and only if the corresponding wealth process satisfies a certain forward-SDE. As examples the cases of power, exponential and logarithmic utilities are considered.
---
PDF链接:
https://arxiv.org/pdf/0806.0240


雷达卡



京公网安备 11010802022788号







