摘要翻译:
研究了多重分形随机游动模型的波动率预测问题。为了避免估计模型相关长度T的不适定问题,我们引入了定义在商空间中的限制对象;从形式上来说,这个对象是一个无限范围的logvolatile。对于这一目标和非限制性目标,我们得到了精确的预测公式,并将其应用于MRW模型的波动率预测和期权定价问题,在没有可靠的平均波动率和t的估计的情况下。
---
英文标题:
《Forecasting volatility with the multifractal random walk model》
---
作者:
Jean Duchon (IF), Raoul Robert (IF), Vincent Vargas (CEREMADE)
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We study the problem of forecasting volatility for the multifractal random walk model. In order to avoid the ill posed problem of estimating the correlation length T of the model, we introduce a limiting object defined in a quotient space; formally, this object is an infinite range logvolatility. For this object and the non limiting object, we obtain precise prediction formulas and we apply them to the problem of forecasting volatility and pricing options with the MRW model in the absence of a reliable estimate of the average volatility and T.
---
PDF链接:
https://arxiv.org/pdf/0801.4220


雷达卡



京公网安备 11010802022788号







