摘要翻译:
本文继续研究满足K_s^2<3chi(S)的一般S型极小曲面的代数基元群。证明了如果K_s^2=3\chi(S)-1且S的代数基本群为8阶,则S是Campedelli曲面。根据Math.AG/0512483和Math.AG/0605733的结果,这表明K^2<3\chi的曲面的基本群最多有9级,如果有8级或9级,则S是Campedelli曲面。为了得到这一结果,我们对一般类型的极小曲面建立了一些分类结果,使得K^2=3P_g-5和规范映射是双分态射。我们还研究了具有Z2^3-作用的有理曲面。
---
英文标题:
《Surfaces with K^2<3\chi and finite fundamental group》
---
作者:
Ciro Ciliberto, Margarida Mendes Lopes and Rita Pardini
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we continue the study of algebraic fundamentale group of minimal surfaces of general type S satisfying K_S^2<3\chi(S). We show that, if K_S^2= 3\chi(S)-1 and the algebraic fundamental group of S has order 8, then S is a Campedelli surface. In view of the results of math.AG/0512483 and math.AG/0605733, this implies that the fundamental group of a surface with K^2<3\chi that has no irregular etale cover has order at most 9, and if it has order 8 or 9, then S is a Campedelli surface. To obtain this result we establish some classification results for minimal surfaces of general type such that K^2=3p_g-5 and such that the canonical map is a birational morphism. We also study rational surfaces with a Z_2^3-action.
---
PDF链接:
https://arxiv.org/pdf/0706.1784


雷达卡



京公网安备 11010802022788号







