摘要翻译:
我们证明了在光滑曲线上与过收敛F-等晶体相关的算术D-模是完整的。我们首先利用单势F-等晶来自于对数F-等晶这一事实,证明了单势F-等晶是完整的D-模。利用Andr\'e、Kedlaya和Mebkhout独立证明的p-adic单子定理,从Matsuda-Trihan曲线上f-等晶半稳定定理导出了一般情况。主要结果已被D.Caro证明。
---
英文标题:
《Sur l'holonomie de D-modules arithm\'etiques associ\'es \`a des
F-isocristaux surconvergents sur des courbes lisses》
---
作者:
Christine Noot-Huyghe (IRMA), Fabien Trihan (UMH)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We show that the arithmetic D-module associated to an overconvergent F-isocrystal over a smooth curve is holonomic. We first prove that unipotent F-isocrystals are holonomic D-module by using the fact that such F-isocrystals come from logarithmic F-isocrystals. We deduce the general case from the semi-stable theorem for F-isocrystals over curves of Matsuda-Trihan which relies on the p-adic monodromy theorem independently proved by Andr\'e, Kedlaya and Mebkhout. The main result has already been proved by D. Caro.
---
PDF链接:
https://arxiv.org/pdf/0705.0416


雷达卡



京公网安备 11010802022788号







