摘要翻译:
对美国的平均和中位收入对工作经验和时间的依赖进行了分析和建模。原始数据集提供了10年的平均和中位数收入估计,跨越了近35年的长时间?1967年至2003年。通过建立个人收入、人口年龄结构和人均GDP三者之间的微观经济模型,预测了各年龄组的平均收入值及其在时间上的相对演变。同样被建模的是工作经验的价值,当平均收入增长结束时,它开始随着年龄的增长呈指数下降。这种工作经验随着时间的推移而随着人均GDP增长的平方根而增加。考虑到潜在的人均增长率为1.6%,对未来20年各年龄组进行了预测。美国的意思是1987年收入对工作经验的依赖与英国2002年的一致?各国人均GDP相等的年份。
---
英文标题:
《Modelling the average income dependence on work experience》
---
作者:
Ivan O. Kitov
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
英文摘要:
The average and median income dependence on work experience and time is analyzed and modeled for the USA. The original data set providing the mean and median income estimates in 10 year long intervals spans a long time period of almost 35 years ? from 1967 to 2003. A microeconomic model linking personal income, population age structure and GDP per capita is used to predict the mean income values in various age groups and their relative evolution in time. Also modeled is the value of work experience where the mean income growth ends and it starts to drop exponentially with increasing age. This work experience increases through time as the square root of the per capita GDP growth. Prediction for the following 20 years is given for each age group considering potential per capita growth rate of 1.6%. The USA mean income dependence on work experience for 1987 coincides with that for 2002 in the UK ? the years when per capita GDP were equal in the countries.
---
PDF链接:
https://arxiv.org/pdf/0811.0489


雷达卡



京公网安备 11010802022788号







