摘要翻译:
约束规划(CP)已被广泛应用于解决各种计算困难的约束满足问题,并取得了巨大的成功。全局约束是CP成功背后的重要因素之一。本文研究了一种新的全局约束--多集序约束,它在对称破缺和最优解搜索中具有重要的应用价值。我们提出了有效的过滤算法来传播这个全局约束。我们证明了算法是健全和完备的,并讨论了可能的扩展。我们还考虑了基于CP工具包中现有约束的替代传播方法。我们在许多基准问题上的实验结果表明,通过专用算法传播多集排序约束是非常有益的。
---
英文标题:
《Filtering Algorithms for the Multiset Ordering Constraint》
---
作者:
Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Toby Walsh
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Data Structures and Algorithms 数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--
---
英文摘要:
Constraint programming (CP) has been used with great success to tackle a wide variety of constraint satisfaction problems which are computationally intractable in general. Global constraints are one of the important factors behind the success of CP. In this paper, we study a new global constraint, the multiset ordering constraint, which is shown to be useful in symmetry breaking and searching for leximin optimal solutions in CP. We propose efficient and effective filtering algorithms for propagating this global constraint. We show that the algorithms are sound and complete and we discuss possible extensions. We also consider alternative propagation methods based on existing constraints in CP toolkits. Our experimental results on a number of benchmark problems demonstrate that propagating the multiset ordering constraint via a dedicated algorithm can be very beneficial.
---
PDF链接:
https://arxiv.org/pdf/0903.0460


雷达卡



京公网安备 11010802022788号







