摘要翻译:
通过离散状态随机“燃烧桥”模型,从理论上研究了分子马达的动态特性,这些马达通过与底层分子轨道的主动相互作用来推动它们的运动。粒子的输运被看作是沿一维具有周期性分布薄弱环节的晶格的有效扩散。当一个无偏的随机步行者通过薄弱环节时,它可以被破坏(`烧毁'),概率为p,在分子马达的运动中提供偏置。本文提出了一种新的理论方法,可以准确地计算运动蛋白在一般条件下的所有动力学性质,如速度和色散。研究发现,弥散是桥体浓度的递减函数,而弥散与燃烧概率的关系更为复杂。我们的计算还表明,对于非常低浓度的薄弱环节,色散中存在一个间隙,这表明无偏扩散和有偏扩散之间存在一个动态相变。理论研究结果得到了蒙特卡罗计算机模拟的支持。
---
英文标题:
《Dynamic Properties of Molecular Motors in Burnt-Bridge Models》
---
作者:
Maxim N. Artyomov, Alexander Yu. Morozov, Ekaterina Pronina, and
Anatoly B. Kolomeisky
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic ``burnt-bridge'' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed (``burned'') with probability p, providing a bias in the motion of the molecular motor. A new theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, at general conditions is presented. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.
---
PDF链接:
https://arxiv.org/pdf/705.069


雷达卡



京公网安备 11010802022788号







