摘要翻译:
通过随机生成正规型对策的收益矩阵,计算了在$N$-玩家,$M$-策略对策的集合中,具有唯一纯策略纳什均衡的对策的频率。这些都是完全可以预测的,因为它们必须收敛于纳什均衡。然后我们考虑更广泛的一类在最佳反应动态下收敛的博弈,其中每个参与者依次选择他们的最优纯策略。我们证明了当玩家数目或策略数目为无穷大时,收敛对策的频率为零。在$2$-玩家的情况下,我们证明了对于至少有$10$-策略的大型博弈,具有多个纯策略纳什均衡的收敛博弈比具有唯一纳什均衡的博弈更有可能。我们的新方法使用$n$-partite图来描述游戏。
---
英文标题:
《The Frequency of Convergent Games under Best-Response Dynamics》
---
作者:
Samuel C. Wiese, Torsten Heinrich
---
最新提交年份:
2020
---
分类信息:
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
---
英文摘要:
Generating payoff matrices of normal-form games at random, we calculate the frequency of games with a unique pure strategy Nash equilibrium in the ensemble of $n$-player, $m$-strategy games. These are perfectly predictable as they must converge to the Nash equilibrium. We then consider a wider class of games that converge under a best-response dynamic, in which each player chooses their optimal pure strategy successively. We show that the frequency of convergent games goes to zero as the number of players or the number of strategies goes to infinity. In the $2$-player case, we show that for large games with at least $10$ strategies, convergent games with multiple pure strategy Nash equilibria are more likely than games with a unique Nash equilibrium. Our novel approach uses an $n$-partite graph to describe games.
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







