摘要翻译:
研究了一个位势中的随机行者需要多少个轨迹才能重建这个位势的值的问题。我们证明了这个问题可以通过计算一个抽象随机行者在部分吸收势中的生存概率来解决。该方法在带有漂移的离散Sinai(随机力)模型上得到了说明。我们确定参数(温度,每个轨迹的持续时间,...)值使重建尽可能快。
---
英文标题:
《Reconstructing a Random Potential from its Random Walks》
---
作者:
Simona Cocco (LPS), Remi Monasson (LPTENS)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
The problem of how many trajectories of a random walker in a potential are needed to reconstruct the values of this potential is studied. We show that this problem can be solved by calculating the probability of survival of an abstract random walker in a partially absorbing potential. The approach is illustrated on the discrete Sinai (random force) model with a drift. We determine the parameter (temperature, duration of each trajectory, ...) values making reconstruction as fast as possible.
---
PDF链接:
https://arxiv.org/pdf/704.2539


雷达卡



京公网安备 11010802022788号







