摘要翻译:
研究了连通半单群$g$在其李代数$\mathfrak{g}$上作用时轨道闭包的变形,特别是当$g$是特殊线性群时。我们使用的工具一方面是不变Hilbert格式,另一方面是$\Mathfrak{g}$表。我们证明了当$g$是特殊线性群时,我们得到的不变Hilbert格式的连通分量是$\Mathfrak{g}$片的几何商。这些商是Katsylo为一般半单李代数$\Mathfrak{g}$构造的;在我们的例子中,它们碰巧是仿射空间。
---
英文标题:
《Invariant deformations of orbit closures in $\mathfrak{sl}_n$》
---
作者:
S\'ebastien Jansou (I3M), Nicolas Ressayre (I3M)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We study deformations of orbit closures for the action of a connected semisimple group $G$ on its Lie algebra $\mathfrak{g}$, especially when $G$ is the special linear group. The tools we use are on the one hand the invariant Hilbert scheme and on the other hand the sheets of $\mathfrak{g}$. We show that when $G$ is the special linear group, the connected components of the invariant Hilbert schemes we get are the geometric quotients of the sheets of $\mathfrak{g}$. These quotients were constructed by Katsylo for a general semisimple Lie algebra $\mathfrak{g}$; in our case, they happen to be affine spaces.
---
PDF链接:
https://arxiv.org/pdf/0706.3828


雷达卡



京公网安备 11010802022788号







