楼主: 何人来此
272 0

[数学] 辛准态与量子同调的半简单性 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-3 20:05:30 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们回顾并简化了我们以前的结果和Y.Ostrover关于半单量子同调辛流形上Calabi准态射和辛准态存在性的结果。作为说明,我们讨论了辛多环Fano 4-流形的情形。我们也给出了D.McDuff的新结果:她观察到对于准态射/准态的存在,只要假定量子同调包含一个场作为直和就足够了,并证明了这个较弱的条件对于非无扰辛流形的一点爆破成立。
---
英文标题:
《Symplectic quasi-states and semi-simplicity of quantum homology》
---
作者:
Michael Entov and Leonid Polterovich
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Symplectic Geometry        辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We review and streamline our previous results and the results of Y.Ostrover on the existence of Calabi quasi-morphisms and symplectic quasi-states on symplectic manifolds with semi-simple quantum homology. As an illustration, we discuss the case of symplectic toric Fano 4-manifolds. We present also new results due to D.McDuff: she observed that for the existence of quasi-morphisms/quasi-states it suffices to assume that the quantum homology contains a field as a direct summand, and she showed that this weaker condition holds true for one point blow-ups of non-uniruled symplectic manifolds.
---
PDF链接:
https://arxiv.org/pdf/0705.3735
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:illustration mathematics hamiltonian Mathematic simplicity 观察 给出 假定 说明 semi

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 03:38