摘要翻译:
我们回顾并简化了我们以前的结果和Y.Ostrover关于半单量子同调辛流形上Calabi准态射和辛准态存在性的结果。作为说明,我们讨论了辛多环Fano 4-流形的情形。我们也给出了D.McDuff的新结果:她观察到对于准态射/准态的存在,只要假定量子同调包含一个场作为直和就足够了,并证明了这个较弱的条件对于非无扰辛流形的一点爆破成立。
---
英文标题:
《Symplectic quasi-states and semi-simplicity of quantum homology》
---
作者:
Michael Entov and Leonid Polterovich
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We review and streamline our previous results and the results of Y.Ostrover on the existence of Calabi quasi-morphisms and symplectic quasi-states on symplectic manifolds with semi-simple quantum homology. As an illustration, we discuss the case of symplectic toric Fano 4-manifolds. We present also new results due to D.McDuff: she observed that for the existence of quasi-morphisms/quasi-states it suffices to assume that the quantum homology contains a field as a direct summand, and she showed that this weaker condition holds true for one point blow-ups of non-uniruled symplectic manifolds.
---
PDF链接:
https://arxiv.org/pdf/0705.3735


雷达卡



京公网安备 11010802022788号







