摘要翻译:
本文研究了有限域三角学作为构造三角数字变换的工具。特别地,利用GF(p)上K余弦函数的性质,引入了有限域离散余弦变换(FFDCT)。定义了GF(p)中的FFDCT对,其块长为(p+1)/2的因子。一个特例是梅森FFDCT,当p是梅森素数时定义。在这种情况下,块长度为2的幂是可能的,可以使用基2快速算法来计算变换。
---
英文标题:
《The Discrete Cosine Transform over Prime Finite Fields》
---
作者:
M.M. Campello de Souza, H.M. de Oliveira, R.M. Campello de Souza and
M.M. Vasconcelos
---
最新提交年份:
2015
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Discrete Mathematics 离散数学
分类描述:Covers combinatorics, graph theory, applications of probability. Roughly includes material in ACM Subject Classes G.2 and G.3.
涵盖组合学,图论,概率论的应用。大致包括ACM学科课程G.2和G.3中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Data Structures and Algorithms 数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This paper examines finite field trigonometry as a tool to construct trigonometric digital transforms. In particular, by using properties of the k-cosine function over GF(p), the Finite Field Discrete Cosine Transform (FFDCT) is introduced. The FFDCT pair in GF(p) is defined, having blocklengths that are divisors of (p+1)/2. A special case is the Mersenne FFDCT, defined when p is a Mersenne prime. In this instance blocklengths that are powers of two are possible and radix-2 fast algorithms can be used to compute the transform.
---
PDF链接:
https://arxiv.org/pdf/1503.03763


雷达卡



京公网安备 11010802022788号







