摘要翻译:
本文介绍了雅克·赫布兰德在形式逻辑方面的工作,并简述了他的生平及其对自动定理证明的影响。目标受众范围从对逻辑感兴趣的学生超过历史学家到逻辑学家。除了著名的Goedel和Dreben对Herbrand伪引理的修正外,我们还介绍了几乎不为人所知的Heijenoort的未发表的修正及其对Herbrand的Modus Ponens消去的结果。除了Herbrand的基本定理及其与Loewenheim-Skolem-定理的关系之外,我们还仔细研究了Herbrand的直觉主义概念与他在无限域中的虚假概念。我们简述了Herbrand关于算术一致性的两个证明和他的递归函数的概念,最后但并非最不重要的是,给出了他的统一算法的正确原文和一个新的翻译。
---
英文标题:
《Lectures on Jacques Herbrand as a Logician》
---
作者:
Claus-Peter Wirth, Joerg Siekmann, Christoph Benzmueller, Serge
Autexier
---
最新提交年份:
2014
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We give some lectures on the work on formal logic of Jacques Herbrand, and sketch his life and his influence on automated theorem proving. The intended audience ranges from students interested in logic over historians to logicians. Besides the well-known correction of Herbrand's False Lemma by Goedel and Dreben, we also present the hardly known unpublished correction of Heijenoort and its consequences on Herbrand's Modus Ponens Elimination. Besides Herbrand's Fundamental Theorem and its relation to the Loewenheim-Skolem-Theorem, we carefully investigate Herbrand's notion of intuitionism in connection with his notion of falsehood in an infinite domain. We sketch Herbrand's two proofs of the consistency of arithmetic and his notion of a recursive function, and last but not least, present the correct original text of his unification algorithm with a new translation.
---
PDF链接:
https://arxiv.org/pdf/0902.4682


雷达卡



京公网安备 11010802022788号







