摘要翻译:
我们证明了Weyl代数上的Fourier变换在toric变体框架中有一个几何对应,即它们在正则toric变体上的微分算子的扭曲环之间诱导同构,这些环的扇子通过一维锥的反射而相互联系。最简单的一类例子是由这种反射与射影空间有关的复角变体提供的。它包括仿射空间中一点的爆破和sl(n+1)最小轨道研究中出现的各种奇异性的解决。
---
英文标题:
《Differential operators on toric varieties and Fourier transform》
---
作者:
Giovanni Felder, Carlo A. Rossi (ETH Zurich)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We show that Fourier transforms on the Weyl algebras have a geometric counterpart in the framework of toric varieties, namely they induce isomorphisms between twisted rings of differential operators on regular toric varieties, whose fans are related to each other by reflections of one-dimensional cones. The simplest class of examples is provided by the toric varieties related by such reflections to projective spaces. It includes the blow-up at a point in affine space and resolution of singularities of varieties appearing in the study of the minimal orbit of sl(n+1).
---
PDF链接:
https://arxiv.org/pdf/0705.1709


雷达卡



京公网安备 11010802022788号







