摘要翻译:
我们分析了Roy模型的实证内容,将其归结为其基本特征,即部门特定的未观察到的异质性和基于潜在结果的自我选择。我们刻画了潜在结果联合分布的尖锐界,以及在工具约束下Roy自选择模型对潜在结果联合分布的可检验含义,我们称之为随机单调工具变量(SMIV)。我们证明了检验Roy模型选择等价于检验观测结果相对于仪器的随机单调性。我们将我们的尖锐界限应用于偏离罗伊自我选择的度量的推导,以识别可观察的特征的值,这些特征导致人才和部门的最昂贵的错误分配,因此是干预的主要目标。特别强调二元结果的情况,这在迄今为止的文献中很少受到关注。对于更丰富的结果集,我们强调了在构造函数特征(如不等式测度)上的尖锐界时,点态尖锐界和泛函尖锐界之间的区别及其重要性。在此框架下,我们分析了加拿大和德国大学专业选择的Roy模型,并从新的角度审视了女性在大学专业选择中的不足。
---
英文标题:
《Sharp bounds and testability of a Roy model of STEM major choices》
---
作者:
Ismael Mourifie, Marc Henry and Romuald Meango
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
We analyze the empirical content of the Roy model, stripped down to its essential features, namely sector specific unobserved heterogeneity and self-selection on the basis of potential outcomes. We characterize sharp bounds on the joint distribution of potential outcomes and testable implications of the Roy self-selection model under an instrumental constraint on the joint distribution of potential outcomes we call stochastically monotone instrumental variable (SMIV). We show that testing the Roy model selection is equivalent to testing stochastic monotonicity of observed outcomes relative to the instrument. We apply our sharp bounds to the derivation of a measure of departure from Roy self-selection to identify values of observable characteristics that induce the most costly misallocation of talent and sector and are therefore prime targets for intervention. Special emphasis is put on the case of binary outcomes, which has received little attention in the literature to date. For richer sets of outcomes, we emphasize the distinction between pointwise sharp bounds and functional sharp bounds, and its importance, when constructing sharp bounds on functional features, such as inequality measures. We analyze a Roy model of college major choice in Canada and Germany within this framework, and we take a new look at the under-representation of women in~STEM.
---
PDF链接:
https://arxiv.org/pdf/1709.09284