楼主: 大多数88
340 0

[数学] 代数连接与代数{$cd$}-模:逆和直 图像 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
71.3197
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-4 13:39:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在(代数可积)连接语言和(代数)$\cd$-模语言之间的字典中,比较连接和$\cd$-模的逆像定义是很容易的。但是,关于连接(光滑态射的Gauss-Manin连接的经典构造)和$\cd$-模的直接映象之间的比较,虽然为专家所知,但直到最近才在Dimca、Maaref、Sabbah和Saito在2000年的一篇论文中得到明确证明,其中作者的主要技术工具是M.Saito在$\cd$-模的导出范畴和微分复形的局部范畴之间的等价性。这篇简短的论文的目的是对[DMSS]论点作一个简化的总结,并提出一种更简单的这种比较的替代证明,因为它不使用Saito等价。此外,我们的替代比较策略在Gauss-Manin连接的前驱上下文中工作(对于态射$f:x\到y$而言,在$f^{-1}\cd_y$-模的层次上),并且可能具有某种内在的兴趣。
---
英文标题:
《Algebraic Connections vs. Algebraic {$\cD$}-modules: inverse and direct
  images》
---
作者:
Maurizio Cailotto, Luisa Fiorot
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In the dictionary between the language of (algebraic integrable) connections and that of (algebraic) $\cD$-modules, to compare the definitions of inverse images for connections and $\cD$-modules is easy. But the comparison between direct images for connections (the classical construction of the Gauss-Manin connection for smooth morphisms) and for $\cD$-modules, although known to specialists, has been explicitly proved only recently in a paper of Dimca, Maaref, Sabbah and Saito in 2000, where the authors' main technical tool was M. Saito's equivalence between the derived category of $\cD$-modules and a localized category of differential complexes. The aim of this short paper is to give a simplified summary of the [DMSS] argument, and to propose an alternative proof of this comparison which is simpler, in the sense that it does not use Saito equivalence. Moreover, our alternative strategy of comparison works in a context which is a precursor to the Gauss-Manin connection (at the level of $f^{-1}\cD_Y$-modules, for a morphism $f:X\to Y$), and may be of some intrinsic interest.
---
PDF链接:
https://arxiv.org/pdf/0707.1748
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Construction Differential Connections Alternative Equivalence inverse Dimca 所知 connection Manin

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-30 21:03