楼主: 何人来此
371 0

[电气工程与系统科学] FOG-RAN中的缓存布局:从集中式到分布式算法 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
62.7954
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24656 点
帖子
4149
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-4 13:44:00 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
为了应对大规模移动用户高速和/或超低时延数据流量的快速增长,光纤陀螺无线接入网络(FOG-RAN)已成为下一代无线网络的一种有前途的体系结构。在FOG-RAN中,边缘节点和用户终端具有不同程度的存储、计算和通信功能,为网络运行提供了高度的灵活性,即从完全集中到完全分布式。本文研究了FOG-RAN中的缓存布局问题,考虑了灵活的物理层传输方案和不同用户的不同内容偏好。我们提出了集中式和分布式传输感知缓存放置策略,以在存储容量约束下最小化用户的平均下载延迟。在集中式模式下,将cache布局问题转化为拟阵约束的子模最大化问题,并提出了一种近似算法,以求在常数内找到最优解。在分布式模式下,提出了一种基于信念传播的分布式算法来提供一个次优解,每个基站基于本地收集的信息进行迭代更新。仿真结果表明,通过利用缓存和协作增益,本文提出的传输感知缓存算法可以大大降低用户的平均下载时延。
---
英文标题:
《Cache Placement in Fog-RANs: From Centralized to Distributed Algorithms》
---
作者:
Juan Liu, Bo Bai, Jun Zhang, and Khaled B. Letaief
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  To deal with the rapid growth of high-speed and/or ultra-low latency data traffic for massive mobile users, fog radio access networks (Fog-RANs) have emerged as a promising architecture for next-generation wireless networks. In Fog-RANs, the edge nodes and user terminals possess storage, computation and communication functionalities to various degrees, which provides high flexibility for network operation, i.e., from fully centralized to fully distributed operation. In this paper, we study the cache placement problem in Fog-RANs, by taking into account flexible physical-layer transmission schemes and diverse content preferences of different users. We develop both centralized and distributed transmission aware cache placement strategies to minimize users' average download delay subject to the storage capacity constraints. In the centralized mode, the cache placement problem is transformed into a matroid constrained submodular maximization problem, and an approximation algorithm is proposed to find a solution within a constant factor to the optimum. In the distributed mode, a belief propagation based distributed algorithm is proposed to provide a suboptimal solution, with iterative updates at each BS based on locally collected information. Simulation results show that by exploiting caching and cooperation gains, the proposed transmission aware caching algorithms can greatly reduce the users' average download delay.
---
PDF链接:
https://arxiv.org/pdf/1710.00784
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Fog 分布式 RAN Applications Transmission 提供 提出 proposed cache 布局

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-6 03:35