摘要翻译:
通过研究合作博弈双方一致只接受核心收益的知识,利用证明理论为合作博弈提供了一个认识基础。我们首先将每个合作博弈转化为一个决策问题,在此问题中,参与者可以根据自己对合作的了解来接受或拒绝提供给她的任何收益向量。然后我们用认知逻辑中的一个修正的KD系统来描述参与者的知识、决策准则和推理过程,它可以看作是Bonanno(2008),(2015)中非合作博弈模型的对应部分;特别地,定义了一个称为C-可接受性的公式来捕获接受核心支付向量的准则。在这个句法框架内,我们根据参与者的知识来刻画合作博弈的核心。在此基础上,我们讨论了Debreu-Scaf定理背后的一个认识不一致性,即从竞争市场的角度来看,副本数量的增加对每个参与者的知识有不变的要求,而从合作博弈的角度来看,对认知能力的参与者有无限的要求。
---
英文标题:
《Knowledge and Unanimous Acceptance of Core Payoffs: An Epistemic
Foundation for Cooperative Game Theory》
---
作者:
Shuige Liu
---
最新提交年份:
2019
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
We provide an epistemic foundation for cooperative games by proof theory via studying the knowledge for players unanimously accepting only core payoffs. We first transform each cooperative game into a decision problem where a player can accept or reject any payoff vector offered to her based on her knowledge about available cooperation. Then we use a modified KD-system in epistemic logic, which can be regarded as a counterpart of the model for non-cooperative games in Bonanno (2008), (2015), to describe a player's knowledge, decision-making criterion, and reasoning process; especially, a formula called C-acceptability is defined to capture the criterion for accepting a core payoff vector. Within this syntactical framework, we characterize the core of a cooperative game in terms of players' knowledge. Based on that result, we discuss an epistemic inconsistency behind Debreu-Scarf Theorem, that is, the increase of the number of replicas has invariant requirement on each participant's knowledge from the aspect of competitive market, while requires unbounded epistemic ability players from the aspect of cooperative game.
---
PDF链接:
https://arxiv.org/pdf/1802.04595


雷达卡



京公网安备 11010802022788号







