楼主: kedemingshi
287 0

[统计数据] 脉动大偏差泛函的扰动理论 流体力学 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-4 17:13:30 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
通过分析由固定在边界处的密度差驱动的随机非线性扩散方程,研究了密度涨落的一个大偏差泛函。利用一个产生涨落定理的基本等式,我们首先将大偏差泛函与一个极小化问题联系起来。然后我们发展了一个摄动方法来解决这个问题。特别地,通过对平均电流进行展开,我们导出了偏离局部平衡部分的最低阶表达式。这个表达式意味着偏差被写成在产生与大偏差泛函的论点相对应的波动的最可能过程中,超额熵产生率的时空积分。
---
英文标题:
《A perturbation theory for large deviation functionals in fluctuating
  hydrodynamics》
---
作者:
Shin-ichi Sasa
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We study a large deviation functional of density fluctuation by analyzing stochastic non-linear diffusion equations driven by the difference between the densities fixed at the boundaries. By using a fundamental equality that yields the fluctuation theorem, we first relate the large deviation functional with a minimization problem. We then develop a perturbation method for solving the problem. In particular, by performing an expansion with respect to the average current, we derive the lowest order expression for the deviation from the local equilibrium part. This expression implies that the deviation is written as the space-time integration of the excess entropy production rate during the most probable process of generating the fluctuation that corresponds to the argument of the large deviation functional.
---
PDF链接:
https://arxiv.org/pdf/706.0043
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:流体力学 Perturbation Minimization Fluctuation equilibrium problem large 泛函 hydrodynamics 产生

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 02:30