摘要翻译:
本文证明了对于一个拟紧半分离(非一定是noetherian)格式X,D(A_qc(X))上的拟相干束的导出范畴是Hovey、Palmieri和Strickland意义上的稳定同伦范畴,从而回答了Strickland提出的一个问题。此外,我们还证明了它的唯一性和代数性。我们还证明了对于一个noetherian半分离形式格式X,其导出的具有拟相干扭转同调的模束范畴D_qct(X)是一个稳定的同伦范畴。它是代数的,但如果形式图式不是通常图式,它就不是单一的,因此它的抽象性质与通常图式的派生范畴的抽象性质本质上不同。
---
英文标题:
《The derived category of quasi-coherent sheaves and axiomatic stable
homotopy》
---
作者:
Leovigildo Alonso, Ana Jeremias, Marta Perez, Maria J. Vale
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
We prove in this paper that for a quasi-compact and semi-separated (non necessarily noetherian) scheme X, the derived category of quasi-coherent sheaves over X, D(A_qc(X)), is a stable homotopy category in the sense of Hovey, Palmieri and Strickland, answering a question posed by Strickland. Moreover we show that it is unital and algebraic. We also prove that for a noetherian semi-separated formal scheme X, its derived category of sheaves of modules with quasi-coherent torsion homologies D_qct(X) is a stable homotopy category. It is algebraic but if the formal scheme is not a usual scheme, it is not unital, therefore its abstract nature differs essentially from that of the derived category of a usual scheme.
---
PDF链接:
https://arxiv.org/pdf/0706.0493


雷达卡



京公网安备 11010802022788号







