摘要翻译:
推广了Deligne-Mumford和de Jong关于真曲线族半稳定修正的定理。主要结果表明,在基部发生一般变化后,任何具有半稳定一般纤维的多点曲线族(不一定是适当的)都允许一个最小的半稳定变化。后者还可以用它的几何纤维没有某些特殊成分的性质来表征。我们证明的主要步骤是值域的一维扩张的一致化。然后利用Riemann-Zariski空间得到任意积分基上的结果。
---
英文标题:
《Stable modification of relative curves》
---
作者:
Michael Temkin
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We generalize theorems of Deligne-Mumford and de Jong on semi-stable modifications of families of proper curves. The main result states that after a generically \'etale alteration of the base any (not necessarily proper) family of multipointed curves with semi-stable generic fiber admits a minimal semi-stable modification. The latter can also be characterized by the property that its geometric fibers have no certain exceptional components. The main step of our proof is uniformization of one-dimensional extensions of valued fields. Riemann-Zariski spaces are then used to obtain the result over any integral base.
---
PDF链接:
https://arxiv.org/pdf/0707.3953


雷达卡



京公网安备 11010802022788号







