摘要翻译:
本文在高余维数闭子簇上引入了伴随理想束的概念,并利用特征$P$方法研究了它的局部性质。当$x$是光滑复变簇$a$的正规Gorenstein闭子簇时,我们给出了$a$沿$x$的伴随理想束$\adj_x(a)$的一个包含L.C.I.理想的sheaf$\Mathcal{D}_x$共$x$。该证明依赖于对Hara和Yoshida的广义检验理想的修正。
---
英文标题:
《Adjoint ideals along closed subvarieties of higher codimension》
---
作者:
Shunsuke Takagi
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
In this paper, we introduce a notion of adjoint ideal sheaves along closed subvarieties of higher codimension and study its local properties using characteristic $p$ methods. When $X$ is a normal Gorenstein closed subvariety of a smooth complex variety $A$, we formulate a restriction property of the adjoint ideal sheaf $\adj_X(A)$ of $A$ along $X$ involving the l.c.i. ideal sheaf $\mathcal{D}_X$ of $X$. The proof relies on a modification of generalized test ideals of Hara and Yoshida.
---
PDF链接:
https://arxiv.org/pdf/0711.2342


雷达卡



京公网安备 11010802022788号







