摘要翻译:
跳扩散最优停止问题的值函数是变分不等式的广义解。本文在假定过程的扩散分量是非退化的,并对L{e}vy测度的奇异性作了较温和的假设,证明了在具有有限/无限变分跳跃的无界区域上,该最优停止问题的值函数在$w^{2,1}_{p,loc}$中,$p\in(1,infty)$。因此,平滑拟合属性保持不变。
---
英文标题:
《Regularity of the Optimal Stopping Problem for Jump Diffusions》
---
作者:
Erhan Bayraktar, Hao Xing
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
The value function of an optimal stopping problem for jump diffusions is known to be a generalized solution of a variational inequality. Assuming that the diffusion component of the process is nondegenerate and a mild assumption on the singularity of the L\'{e}vy measure, this paper shows that the value function of this optimal stopping problem on an unbounded domain with finite/infinite variation jumps is in $W^{2,1}_{p, loc}$ with $p\in(1, \infty)$. As a consequence, the smooth-fit property holds.
---
PDF链接:
https://arxiv.org/pdf/0902.2479


雷达卡



京公网安备 11010802022788号







