摘要翻译:
在序的最小模型程序中引入的正则序是Kleinian奇点及其相关的斜群环的同时推广。本文通过非交换循环覆盖和斜群环构造了正则序的极小分解。这使得我们可以在规范序的极小分辨率和规范序的斜群环形式之间证明一个导出的等价性,但只有一种情况除外。用于构造这种等价性的Fourier-Mukai变换使我们能够显式地表示规范阶的McKay对应的数值形式,它将最小分辨率的异常曲线与规范阶的不可分解自反模联系起来。
---
英文标题:
《McKay correspondence for canonical orders》
---
作者:
Daniel Chan
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Rings and Algebras 环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
---
英文摘要:
Canonical orders, introduced in the minimal model program for orders, are simultaneous generalisations of Kleinian singularities and their associated skew group rings. In this paper, we construct minimal resolutions of canonical orders via non-commutative cyclic covers and skew group rings. This allows us to exhibit a derived equivalence between minimal resolutions of canonical orders and the skew group ring form of the canonical order in all but one case. The Fourier-Mukai transform used to construct this equivalence allows us to make explicit, the numerical version of the McKay correspondence for canonical orders which, relates the exceptional curves of the minimal resolution to the indecomposable reflexive modules of the canonical order.
---
PDF链接:
https://arxiv.org/pdf/0707.3481


雷达卡



京公网安备 11010802022788号







