摘要翻译:
本文研究了定义在复数上的光滑簇上的有理齐次丛$Z到S$的Chow-Kuenneth分解存在性的Murre猜想。当$S$具有Chow-Kuenneth分解时,$Z$表现为Chow-k“unneth分解。M.Brion研究的一类对数齐次变种也有同样的结论。
---
英文标题:
《Absolute Chow-Kuenneth decomposition for rational homogeneous bundles
and for log homogeneous varieties》
---
作者:
Jaya NN Iyer
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
In this paper, we investigate Murre's conjecture on the existence of a Chow--Kuenneth decomposition for a rational homogeneous bundle $Z\to S$ over a smooth variety, defined over complex numbers. Chow-K\"unneth decomposition is exhibited for $Z$ whenever $S$ has a Chow--Kuenneth decomposition. The same conclusion holds for a class of log homogeneous varieties, studied by M. Brion.
---
PDF链接:
https://arxiv.org/pdf/0805.2048


雷达卡



京公网安备 11010802022788号







