摘要翻译:
给出了代数整数环谱上几个非零Hermitian向量丛张量积的最大斜率的一个上界。利用Minkowski定理,我们需要估计张量积的任意Hermitian线子丛的Arakelov度。在几何不变理论意义下,$M$的一般纤维是半可观测的情况下,通过经典不变理论构造一个在$M$的一般纤维上不消失的特殊多项式来建立估计。否则,我们使用Ramanan和Ramanathan的结果的一个明确版本来将一般情况简化为前一种情况。
---
英文标题:
《Maximal slope of tensor product of Hermitian vector bundles》
---
作者:
Huayi Chen (CMLS-EcolePolytechnique)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski's theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle $\bar M$ of the tensor product. In the case where the generic fiber of $M$ is semistable in the sense of geometric invariant theory, the estimation is established by constructing, through the classical invariant theory, a special polynomial which does not vanish on the generic fibre of $M$. Otherwise we use an explicte version of a result of Ramanan and Ramanathan to reduce the general case to the former one.
---
PDF链接:
https://arxiv.org/pdf/0706.0690


雷达卡



京公网安备 11010802022788号







