楼主: kedemingshi
262 0

[数学] 调和态射与超椭圆图 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.3335
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-5 20:30:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们研究了图的调和态射作为Riemann曲面之间全纯映射的自然离散模拟。我们建立了经典Riemann-Hurwitz公式的图论模拟,研究了由调和态射引起的Jacobian型和调和1-型上的泛函映射,并给出了从Riemann曲面到射影空间的正则映射的离散模拟。我们还讨论了超椭圆图概念的几个等价公式,它们都是由经典黎曼曲面理论所推动的。作为我们结果的应用,我们证明了对于不是圈的2-边连通图G,在G上至多存在一个对合$\Iota$,其商$G/\Iota$是树。我们还证明了图G中生成树的个数是偶数的当且仅当G对由2条边连接的2个顶点组成的图B2允许一个非常调和态射。最后,利用Riemann-Hurwitz公式和我们关于超椭圆图的结果,对所有不含Weierstrass点的超椭圆图进行了分类。
---
英文标题:
《Harmonic morphisms and hyperelliptic graphs》
---
作者:
Matthew Baker and Serguei Norine
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We study harmonic morphisms of graphs as a natural discrete analogue of holomorphic maps between Riemann surfaces. We formulate a graph-theoretic analogue of the classical Riemann-Hurwitz formula, study the functorial maps on Jacobians and harmonic 1-forms induced by a harmonic morphism, and present a discrete analogue of the canonical map from a Riemann surface to projective space. We also discuss several equivalent formulations of the notion of a hyperelliptic graph, all motivated by the classical theory of Riemann surfaces. As an application of our results, we show that for a 2-edge-connected graph G which is not a cycle, there is at most one involution $\iota$ on G for which the quotient $G/\iota$ is a tree. We also show that the number of spanning trees in a graph G is even if and only if G admits a non-constant harmonic morphism to the graph B_2 consisting of 2 vertices connected by 2 edges. Finally, we use the Riemann-Hurwitz formula and our results on hyperelliptic graphs to classify all hyperelliptic graphs having no Weierstrass points.
---
PDF链接:
https://arxiv.org/pdf/0707.1309
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:formulations Optimization mathematics Game Theory Application 曲面 映射 study Hurwitz analogue

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-17 06:09