楼主: 大多数88
309 0

[电气工程与系统科学] 基于生成对抗网络的标志点人脸合成 和逆潜空间映射 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.7797
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-5 21:22:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
面部地标是指面部基本点在人脸图像上的定位。已经有大量的尝试从人脸图像中检测这些点,但是从来没有尝试合成一个随机的人脸并生成相应的人脸地标。本文提出了一种在潜在Z空间中扩充数据集的框架,并应用于从二维人脸数据集生成相应地标集的回归问题。BARID框架已经被用来训练一个来自CelebA数据库的人脸生成器。利用Adam优化器实现生成器的逆,生成对应于每个人脸图像的潜在向量,并训练轻量级深度神经网络将潜在Z空间向量映射到地标空间。初步结果是有希望的,并提供了一个通用的方法,以增加注释图像数据集与额外的中间样本。
---
英文标题:
《Face Synthesis with Landmark Points from Generative Adversarial Networks
  and Inverse Latent Space Mapping》
---
作者:
Shabab Bazrafkan, Hossein Javidnia, Peter Corcoran
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--

---
英文摘要:
  Facial landmarks refer to the localization of fundamental facial points on face images. There have been a tremendous amount of attempts to detect these points from facial images however, there has never been an attempt to synthesize a random face and generate its corresponding facial landmarks. This paper presents a framework for augmenting a dataset in a latent Z-space and applied to the regression problem of generating a corresponding set of landmarks from a 2D facial dataset. The BEGAN framework has been used to train a face generator from CelebA database. The inverse of the generator is implemented using an Adam optimizer to generate the latent vector corresponding to each facial image, and a lightweight deep neural network is trained to map latent Z-space vectors to the landmark space. Initial results are promising and provide a generic methodology to augment annotated image datasets with additional intermediate samples.
---
PDF链接:
https://arxiv.org/pdf/1802.0039
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:localization Mathematical Construction Architecture Applications corresponding images latent generator face

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 23:21