楼主: 何人来此
639 0

[电气工程与系统科学] 时间和音调标度的时代同步重叠相加(ESOLA) 语音信号的修正 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-5 21:49:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
语音信号的时间尺度和基音尺度变化在语音合成、重放系统、语音转换、学习/助听器等方面有着重要的应用。需要计算效率高、实时可实现的算法。在本文中,我们提出了一种基于声门闭合瞬间的高质量和计算效率的时间和基音缩放方法。该算法被称为ESOLA-TS/PS(ESOLA-TS/PS),它将语音信号分割成重叠的短时帧,然后将相邻帧相对于epochs对齐,并对这些帧进行重叠相加,以合成时间尺度修改语音。基音缩放是通过用期望的采样因子对时间缩放的语音进行重采样来实现的。我们还提出了在语音信号中嵌入历元的概念,这有助于识别和标记对应于历元的样本,并在需要时使用它们将时间/基音缩放到多个缩放因子,从而有助于更快和有效的实现。本文报告的感知评估测试结果表明,ESOLA优于现有技术。ESOLA在感知质量和修改后的语音可懂度方面明显优于传统的基音同步叠加(PSOLA)技术。与波形相似性叠加(WSOLA)或同步叠加(SOLA)技术不同,ESOLA技术能够在0.5-2的范围内对语音进行精确的高质量的时间缩放,达到任何期望的修改因子。与同步重叠加固定合成(SOLAFS)相比,ESOLA在计算上是有利的,至少快三倍。
---
英文标题:
《Epoch-Synchronous Overlap-Add (ESOLA) for Time- and Pitch-Scale
  Modification of Speech Signals》
---
作者:
Sunil Rudresh, Aditya Vasisht, Karthika Vijayan, and Chandra Sekhar
  Seelamantula
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--

---
英文摘要:
  Time- and pitch-scale modifications of speech signals find important applications in speech synthesis, playback systems, voice conversion, learning/hearing aids, etc.. There is a requirement for computationally efficient and real-time implementable algorithms. In this paper, we propose a high quality and computationally efficient time- and pitch-scaling methodology based on the glottal closure instants (GCIs) or epochs in speech signals. The proposed algorithm, termed as epoch-synchronous overlap-add time/pitch-scaling (ESOLA-TS/PS), segments speech signals into overlapping short-time frames and then the adjacent frames are aligned with respect to the epochs and the frames are overlap-added to synthesize time-scale modified speech. Pitch scaling is achieved by resampling the time-scaled speech by a desired sampling factor. We also propose a concept of epoch embedding into speech signals, which facilitates the identification and time-stamping of samples corresponding to epochs and using them for time/pitch-scaling to multiple scaling factors whenever desired, thereby contributing to faster and efficient implementation. The results of perceptual evaluation tests reported in this paper indicate the superiority of ESOLA over state-of-the-art techniques. ESOLA significantly outperforms the conventional pitch synchronous overlap-add (PSOLA) techniques in terms of perceptual quality and intelligibility of the modified speech. Unlike the waveform similarity overlap-add (WSOLA) or synchronous overlap-add (SOLA) techniques, the ESOLA technique has the capability to do exact time-scaling of speech with high quality to any desired modification factor within a range of 0.5 to 2. Compared to synchronous overlap-add with fixed synthesis (SOLAFS), the ESOLA is computationally advantageous and at least three times faster.
---
PDF链接:
https://arxiv.org/pdf/1801.06492
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:eso SOL Modification Applications Segmentation 感知 基音 修改 speech

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 23:58