摘要翻译:
光滑复代数簇$M$上的一阶局部系统$\ll$是1-容许的,如果第一个上同调群$h^1(M,\ll)$的维数可以由上同调代数$h^*(M,\c)$以$\leq2$为单位计算。在$M$是1-形式的假设下,我们证明了在第一特征簇$\v_1(M)$的一个非平移不可约分量$W$上的所有局部系统,除有限个外,都是1-容许的,见命题3.1。同样的结果也适用于翻译组件$W$上的本地系统,但是现在$H^*(M,\c)$应该替换为$H^*(M_0,\c)$,其中$M_0$是通过删除由翻译组件$W$确定的一些超曲面从$M$得到的Zariski开子集,参见定理4.3。
---
英文标题:
《On admissible rank one local systems》
---
作者:
A. Dimca
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
A rank one local system $\LL$ on a smooth complex algebraic variety $M$ is 1-admissible if the dimension of the first cohomology group $H^1(M,\LL)$ can be computed from the cohomology algebra $H^*(M,\C)$ in degrees $\leq 2$. Under the assumption that $M$ is 1-formal, we show that all local systems, except finitely many, on a non-translated irreducible component $W$ of the first characteristic variety $\V_1(M)$ are 1-admissible, see Proposition 3.1. The same result holds for local systems on a translated component $W$, but now $H^*(M,\C)$ should be replaced by $H^*(M_0,\C)$, where $M_0$ is a Zariski open subset obtained from $M$ by deleting some hypersurfaces determined by the translated component $W$, see Theorem 4.3.
---
PDF链接:
https://arxiv.org/pdf/0707.4646


雷达卡



京公网安备 11010802022788号







