摘要翻译:
对于一个具有正特征的变量$x$和一个非负整数$e$,我们定义它的$e$-次f-爆破是$e$-迭代Frobenius的$x$的普适平坦。因此,我们得到了$x$的爆破序列(一个由非负整数标记的集合)。在某些条件下,序列稳定并导致一个很好的(例如,最小或裂缝)分辨率。对于驯服商奇点,该序列导出$G$-Hilbert格式。
---
英文标题:
《Universal flattening of Frobenius》
---
作者:
Takehiko Yasuda
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
For a variety $X$ of positive characteristic and a non-negative integer $e$, we define its $e$-th F-blowup to be the universal flattening of the $e$-iterated Frobenius of $X$. Thus we have the sequence (a set labeled by non-negative integers) of blowups of $X$. Under some condition, the sequence stabilizes and leads to a nice (for instance, minimal or crepant) resolution. For tame quotient singularities, the sequence leads to the $G$-Hilbert scheme.
---
PDF链接:
https://arxiv.org/pdf/0706.2700


雷达卡



京公网安备 11010802022788号







