摘要翻译:
讨论了一个自由的Frobenius分裂的特征形式,并给出了一个对角分裂的多面体判据。我们利用这个判据证明了对角分裂的toric变体上的nef线束的截面环通常是Koszul的,而Schubert变体一般不是对角分裂的。
---
英文标题:
《Frobenius splittings of toric varieties》
---
作者:
Sam Payne
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We discuss a characteristic free version of Frobenius splittings for toric varieties and give a polyhedral criterion for a toric variety to be diagonally split. We apply this criterion to show that section rings of nef line bundles on diagonally split toric varieties are normally presented and Koszul, and that Schubert varieties are not diagonally split in general.
---
PDF链接:
https://arxiv.org/pdf/0802.4302


雷达卡



京公网安备 11010802022788号







