摘要翻译:
我们使用极限环振荡器来模拟双相Ⅱ型障碍,其特点是轻躁狂和抑郁发作交替,困扰着大约1%的美国成年人。我们考虑单个双极患者的两个非线性振子模型。在这两个框架中,我们从一个未经治疗的个体开始,并检查治疗的数学效应和由此产生的生物学后果。我们还简要地考虑了使用弱耦合、弱阻尼谐振子的相互作用双极II个体的动力学。我们讨论了如何将所提出的模型用作包含额外生物数据的精炼模型的框架。我们最后讨论了我们的工作的可能的概括,因为有几个生物学动机的扩展可以很容易地结合到这里提出的模型系列中。
---
英文标题:
《Mathematical Models of Bipolar Disorder》
---
作者:
Darryl Daugherty, Tairi Roque-Urrea, John Urrea-Roque, Jessica Snyder,
Stephen Wirkus, and Mason A. Porter
---
最新提交年份:
2004
---
分类信息:
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
---
英文摘要:
We use limit cycle oscillators to model Bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about one percent of the United States adult population. We consider two nonlinear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
---
PDF链接:
https://arxiv.org/pdf/nlin/0311032


雷达卡




京公网安备 11010802022788号







