楼主: nandehutu2022
230 0

[电气工程与系统科学] 基于J向量的文本相关双联合贝叶斯方法 说话人验证 [推广有奖]

  • 0关注
  • 5粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
69.6121
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24246 点
帖子
4004
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-20

楼主
nandehutu2022 在职认证  发表于 2022-3-6 10:21:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
J向量已被证明在短时程语音的文本相关说话人验证中是非常有效的。然而,目前最先进的后端分类器,如联合贝叶斯模型,不能充分利用这些深层特征。在本文中,我们推广了标准的联合贝叶斯方法来显式地联合建模J-向量中的多个方面的信息。在我们的推广中,J向量是由一个包含几种潜在变量的生成双联合贝叶斯(DoJoBa)模型导出的结果。使用DoJoBa,我们能够显式地构建一个模型,该模型可以组合来自J向量的多个异构信息。在验证步骤中,我们计算了描述两个J向量是否具有一致标记的似然度。在公开的RSR2015数据语料库上的实验结果表明,该方法对冒名顶替错误和冒名顶替正确的情况分别能获得0.02%EER和0.02%EER。
---
英文标题:
《A Double Joint Bayesian Approach for J-Vector Based Text-dependent
  Speaker Verification》
---
作者:
Ziqiang Shi and Mengjiao Wang and Liu Liu and Huibin Lin and Rujie Liu
---
最新提交年份:
2017
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Computer Science        计算机科学
二级分类:Multimedia        多媒体
分类描述:Roughly includes material in ACM Subject Class H.5.1.
大致包括ACM学科类H.5.1中的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  J-vector has been proved to be very effective in text-dependent speaker verification with short-duration speech. However, the current state-of-the-art back-end classifiers, e.g. joint Bayesian model, cannot make full use of such deep features. In this paper, we generalize the standard joint Bayesian approach to model the multi-faceted information in the j-vector explicitly and jointly. In our generalization, the j-vector was modeled as a result derived by a generative Double Joint Bayesian (DoJoBa) model, which contains several kinds of latent variables. With DoJoBa, we are able to explicitly build a model that can combine multiple heterogeneous information from the j-vectors. In verification step, we calculated the likelihood to describe whether the two j-vectors having consistent labels or not. On the public RSR2015 data corpus, the experimental results showed that our approach can achieve 0.02\% EER and 0.02\% EER for impostor wrong and impostor correct cases respectively.
---
PDF链接:
https://arxiv.org/pdf/1711.06434
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:贝叶斯 Verification Architecture cancellation localization dependent 是否 information 语音 方法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-8 05:38