摘要翻译:
设X是复解析流形。给出纯余维数P>0的闭子空间$Y\子集X$,我们考虑了局部代数上同调$H^P_{[Y]}({Cal O}_X)$和${Cal L}(Y,X)\子集H^P_{[Y]}({Cal O}_X)$的丛是Brylinski-Kashiwara的交同调D_x-模。本文根据Bernstein-Sato泛函方程,给出了空间Y的一个代数刻划,使得L(Y,X)与$H^P_{[Y]}({\cal O}_X)$重合。
---
英文标题:
《Intersection homology D-Modules and Bernstein polynomials associated
with a complete intersection》
---
作者:
Tristan Torrelli (JAD)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a complex analytic manifold. Given a closed subspace $Y\subset X$ of pure codimension p>0, we consider the sheaf of local algebraic cohomology $H^p_{[Y]}({\cal O}_X)$, and ${\cal L}(Y,X)\subset H^p_{[Y]}({\cal O}_X)$ the intersection homology D_X-Module of Brylinski-Kashiwara. We give here an algebraic characterization of the spaces Y such that L(Y,X) coincides with $H^p_{[Y]}({\cal O}_X)$, in terms of Bernstein-Sato functional equations.
---
PDF链接:
https://arxiv.org/pdf/0709.1578


雷达卡



京公网安备 11010802022788号







