摘要翻译:
在特征零点,超曲面的Bernstein-Sato多项式可以描述为Euler算子在适当D-模上作用的极小多项式。我们考虑了正特征中的类似D-模,并用它定义了一个Bernstein-Sato多项式序列(对应于我们还需要考虑除幂Euler算子)。我们证明了在Hara和Yoshida的意义下,这些多项式所包含的信息与超曲面的f-跳跃指数所给出的信息是等价的。
---
英文标题:
《Bernstein-Sato polynomials in positive characteristic》
---
作者:
Mircea Mustata
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
In characteristic zero, the Bernstein-Sato polynomial of a hypersurface can be described as the minimal polynomial of the action of an Euler operator on a suitable D-module. We consider the analogous D-module in positive characteristic, and use it to define a sequence of Bernstein-Sato polynomials (corresponding to the fact that we need to consider also divided powers Euler operators). We show that the information contained in these polynomials is equivalent to that given by the F-jumping exponents of the hypersurface, in the sense of Hara and Yoshida.
---
PDF链接:
https://arxiv.org/pdf/0711.3794


雷达卡



京公网安备 11010802022788号







