摘要翻译:
在这项工作中,我们研究了高效地预处理大量鸟类声学数据的问题。我们将包括降噪方法在内的几个现有预处理步骤结合到一个有效的流水线中,通过单独检查每个过程。然后我们利用分布式计算架构来提高执行时间。采用数据并行化的主从模型,我们开发了一个接近线性的自动化可扩展系统,能够在8台虚拟机上用32个核预处理鸟类声学记录,比串行处理快21.76倍。本研究为生物声学分析的研究领域做出了贡献,生物声学分析目前非常活跃,因为它具有低成本快速监测动物的潜力。克服噪声干扰是许多生物声学研究中的一个重大挑战,这些研究的数据量正在增加。我们的工作使得大规模的鸟类声学分析更加可行,通过并行重要的鸟类声学处理任务来显著减少执行时间。
---
英文标题:
《Scalable Preprocessing of High Volume Bird Acoustic Data》
---
作者:
Alexander Brown, Saurabh Garg, James Montgomery
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Distributed, Parallel, and Cluster Computing 分布式、并行和集群计算
分类描述:Covers fault-tolerance, distributed algorithms, stabilility, parallel computation, and cluster computing. Roughly includes material in ACM Subject Classes C.1.2, C.1.4, C.2.4, D.1.3, D.4.5, D.4.7, E.1.
包括容错、分布式算法、稳定性、并行计算和集群计算。大致包括ACM学科类C.1.2、C.1.4、C.2.4、D.1.3、D.4.5、D.4.7、E.1中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
In this work, we examine the problem of efficiently preprocessing high volume bird acoustic data. We combine several existing preprocessing steps including noise reduction approaches into a single efficient pipeline by examining each process individually. We then utilise a distributed computing architecture to improve execution time. Using a master-slave model with data parallelisation, we developed a near-linear automated scalable system, capable of preprocessing bird acoustic recordings 21.76 times faster with 32 cores over 8 virtual machines, compared to a serial process. This work contributes to the research area of bioacoustic analysis, which is currently very active because of its potential to monitor animals quickly at low cost. Overcoming noise interference is a significant challenge in many bioacoustic studies, and the volume of data in these studies is increasing. Our work makes large scale bird acoustic analyses more feasible by parallelising important bird acoustic processing tasks to significantly reduce execution times.
---
PDF链接:
https://arxiv.org/pdf/1802.00535


雷达卡



京公网安备 11010802022788号







