摘要翻译:
最大频繁模式超集检查在完全最大频繁项集(MFI)的高效挖掘和最大搜索空间剪枝中起着重要作用。本文提出了一种用于局部最大频繁模式(项集)传播和最大模式超集检查的索引方法FastLMFI。在不同的稀疏和稠密数据集上的实验结果表明,我们的工作优于以往众所周知的渐进聚焦技术。我们还将我们的超集检查方法与现有的最大项集算法Mafia相结合,并与现有的最大项集算法afopt-max和FP(zhu)-MAX进行了比较。在稠密数据集上,在几乎所有的支持度阈值上,我们的结果都优于afopt-max和FP(zhu)-max,这表明了我们方法的有效性。
---
英文标题:
《FastLMFI: An Efficient Approach for Local Maximal Patterns Propagation
and Maximal Patterns Superset Checking》
---
作者:
Shariq Bashir, Abdul Rauf Baig
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Databases 数据库
分类描述:Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
涵盖数据库管理、数据挖掘和数据处理。大致包括ACM学科类E.2、E.5、H.0、H.2和J.1中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Data Structures and Algorithms 数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--
---
英文摘要:
Maximal frequent patterns superset checking plays an important role in the efficient mining of complete Maximal Frequent Itemsets (MFI) and maximal search space pruning. In this paper we present a new indexing approach, FastLMFI for local maximal frequent patterns (itemset) propagation and maximal patterns superset checking. Experimental results on different sparse and dense datasets show that our work is better than the previous well known progressive focusing technique. We have also integrated our superset checking approach with an existing state of the art maximal itemsets algorithm Mafia, and compare our results with current best maximal itemsets algorithms afopt-max and FP (zhu)-max. Our results outperform afopt-max and FP (zhu)-max on dense (chess and mushroom) datasets on almost all support thresholds, which shows the effectiveness of our approach.
---
PDF链接:
https://arxiv.org/pdf/0904.3310


雷达卡



京公网安备 11010802022788号







