楼主: mingdashike22
407 0

[数学] 的半定可表示性的充要条件 凸壳与凸集 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-6 13:56:50 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
如果一个集合$S\子集合Q\re^n$等于一个集合在高维空间中的投影,且该集合可以用某种线性矩阵不等式(LMI)来描述,则称其为{它半正定(SDP)}可表示。对于有界SDP可表示集$w_1,...,w_m$,我们给出了$\cv{\cup_{k=1}^mw_k}$的一个SDP表示的显式构造。这提供了一种从局部SDP表示构建全局SDP表示的技术。(ii)对于紧凸半代数集$S$的SDP可表示性,我们证明了边界$\bds$是正弯曲的充分条件和必要条件:$\bds$在光滑点和非退化角上具有非负曲率。这相当于定义多项式在$\bds$上消失的点上的严格和非严格准凹性。它们之间的间隙是$\bds$,具有正曲率和非负曲率,光滑点和非光滑点。绕过间隙的一个充分条件是当$s$的一些定义多项式是sos凹的。(iii)对于紧致非凸半代数集$T$的凸包的SDP可表示性,我们发现临界对象是$\pt_ct$,$\pt_ct$包含在$\pt\cv{T}$中的$\pt_ct$的最大子集。我们证明了SDP可表示性的充分条件:$\pt_ct$是正弯曲的,必要条件:$\pt_ct$在光滑点和非退化角上具有非负曲率。它们之间的差距类似于案例(二)。本文还讨论了正定拉格朗日-黑森(PDLH)条件。
---
英文标题:
《Sufficient and Necessary Conditions for Semidefinite Representability of
  Convex Hulls and Sets》
---
作者:
J. William Helton and Jiawang Nie
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  A set $S\subseteq \re^n$ is called to be {\it Semidefinite (SDP)} representable if $S$ equals the projection of a set in higher dimensional space which is describable by some Linear Matrix Inequality (LMI). The contributions of this paper are: (i) For bounded SDP representable sets $W_1,...,W_m$, we give an explicit construction of an SDP representation for $\cv{\cup_{k=1}^mW_k}$. This provides a technique for building global SDP representations from the local ones. (ii) For the SDP representability of a compact convex semialgebraic set $S$, we prove sufficient condition: the boundary $\bdS$ is positively curved, and necessary condition: $\bdS$ has nonnegative curvature at smooth points and on nondegenerate corners. This amounts to the strict versus nonstrict quasi-concavity of defining polynomials on those points on $\bdS$ where they vanish. The gaps between them are $\bdS$ having positive versus nonnegative curvature and smooth versus nonsmooth points. A sufficient condition bypassing the gaps is when some defining polynomials of $S$ are sos-concave. (iii) For the SDP representability of the convex hull of a compact nonconvex semialgebraic set $T$, we find that the critical object is $\pt_cT$, the maximum subset of $\pt T$ contained in $\pt \cv{T}$. We prove sufficient conditions for SDP representability: $\pt_cT$ is positively curved, and necessary conditions: $\pt_cT$ has nonnegative curvature at smooth points and on nondegenerate corners. The gaps between them are similar to case (ii). The positive definite Lagrange Hessian (PDLH) condition is also discussed.
---
PDF链接:
https://arxiv.org/pdf/0709.4017
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Presentation Optimization Construction Contribution Nonnegative 证明 非负 构建 points

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 03:42