楼主: 何人来此
204 0

[电气工程与系统科学] 心电信号误标训练样本的机器识别 学习 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
62.7954
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24656 点
帖子
4149
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-6 13:58:00 来自手机 |只看作者 |坛友微信交流群|倒序 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
心电图信号的分类精度往往受到多种因素的影响,其中训练样本误标问题是影响最大的问题之一。为了减轻这种负面影响,引入交叉验证的方法来识别误标样品。该方法利用不同分类器的协同优势,对训练样本进行滤波。该滤波器通过10倍交叉验证去除错误标记的训练样本,保留正确标记的训练样本。因此,为最终分类器提供一个新的训练集,以获得更高的分类精度。最后,我们用MIT-BIH心律失常数据库进行了数值计算,验证了该方法的有效性。
---
英文标题:
《Identifying the Mislabeled Training Samples of ECG Signals using Machine
  Learning》
---
作者:
Yaoguang Li, Wei Cui, and Cong Wang
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--

---
英文摘要:
  The classification accuracy of electrocardiogram signal is often affected by diverse factors in which mislabeled training samples issue is one of the most influential problems. In order to mitigate this negative effect, the method of cross validation is introduced to identify the mislabeled samples. The method utilizes the cooperative advantages of different classifiers to act as a filter for the training samples. The filter removes the mislabeled training samples and retains the correctly labeled ones with the help of 10-fold cross validation. Consequently, a new training set is provided to the final classifiers to acquire higher classification accuracies. Finally, we numerically show the effectiveness of the proposed method with the MIT-BIH arrhythmia database.
---
PDF链接:
https://arxiv.org/pdf/1712.03792
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:电信号 Applications Optimization Application Recognition 分类器 验证 交叉 错误 validation

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 20:31