摘要翻译:
通过辅助环面簇中的代数环面T的作用,给出了射影格式X的Chow商和Hilbert商的显式方程。因此,我们给出了这些规范商的GIT描述,并通过GIT商的变化得到了X的其他GIT商。利用这些结果,我们得到了稳定亏格零n点曲线的模空间{M}{0,n}的方程,它是通过热带方法定义的光滑的toric簇的子簇。
---
英文标题:
《Equations for Chow and Hilbert Quotients》
---
作者:
Angela Gibney and Diane Maclagan
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give explicit equations for the Chow and Hilbert quotients of a projective scheme X by the action of an algebraic torus T in an auxiliary toric variety. As a consequence we provide GIT descriptions of these canonical quotients, and obtain other GIT quotients of X by variation of GIT quotient. We apply these results to find equations for the moduli space \bar{M}_{0,n} of stable genus zero n-pointed curves as a subvariety of a smooth toric variety defined via tropical methods.
---
PDF链接:
https://arxiv.org/pdf/0707.1801


雷达卡



京公网安备 11010802022788号







