摘要翻译:
在本文中,基于强度函数依赖于实未知参数的非齐次泊松过程的实现,我们考虑了一个简单的紧(连续)方案序列的假设。在一定的正则性条件下,我们得到了分数检验相对于Neyman-Pearson检验的功率损失。功率损耗是借助所考虑问题的三阶渐近性质来度量二阶有效测试的性能。
---
英文标题:
《Power Loss for Inhomogeneous Poisson Processes》
---
作者:
Khosrow Fazli
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
In this work, based on a realization of an inhomogeneous Poisson process whose intensity function depends on a real unknown parameter, we consider a simple hypothesis against a sequence of close (contiguous) alternatives. Under certain regularity conditions we obtain the power loss of the score test with respect to the Neyman-Pearson test. The power loss measures the performance of a second order efficient test by the help of third order asymptotic properties of the problem under consideration.
---
PDF链接:
https://arxiv.org/pdf/706.4334


雷达卡



京公网安备 11010802022788号







