楼主: 能者818
567 0

[统计数据] 对称破相中的泛函重整化群:动量 自能的依赖性和双参数标度 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.6240
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-6 21:01:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在Ginzburg-Landau理论的不可约顶点的泛函重整化群(RG)方程中,引入了自发对称破缺,并用序参量的流方程对这些方程进行了扩充。利用这一策略,我们对D维Ising普适类的对称破相顶点的耦合RG流方程提出了一个简单的截断。我们的截断得到了自能Sigma(k)的完全动量依赖性,并在大动量k下的最低阶微扰理论和小动量k下的临界标度区之间插值。在接近临界点时,我们的方法得到了标度形式Sigma(k)=k_c^2Sigma^{-}(k xi,k/k_c)的自能,其中xi是序参量相关长度,k_c是金兹堡标度,Sigma^{-}(x,y)是我们在截断中显式计算的对称性破坏相位的无量纲双参数标度函数。
---
英文标题:
《Functional renormalization group in the broken symmetry phase: momentum
  dependence and two-parameter scaling of the self-energy》
---
作者:
Andreas Sinner, Nils Hasselmann, and Peter Kopietz
---
最新提交年份:
2008
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:High Energy Physics - Theory        高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--

---
英文摘要:
  We include spontaneous symmetry breaking into the functional renormalization group (RG) equations for the irreducible vertices of Ginzburg-Landau theories by augmenting these equations by a flow equation for the order parameter, which is determined from the requirement that at each RG step the vertex with one external leg vanishes identically. Using this strategy, we propose a simple truncation of the coupled RG flow equations for the vertices in the broken symmetry phase of the Ising universality class in D dimensions. Our truncation yields the full momentum dependence of the self-energy Sigma (k) and interpolates between lowest order perturbation theory at large momenta k and the critical scaling regime for small k. Close to the critical point, our method yields the self-energy in the scaling form Sigma (k) = k_c^2 sigma^{-} (k | xi, k / k_c), where xi is the order parameter correlation length, k_c is the Ginzburg scale, and sigma^{-} (x, y) is a dimensionless two-parameter scaling function for the broken symmetry phase which we explicitly calculate within our truncation.
---
PDF链接:
https://arxiv.org/pdf/707.411
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:依赖性 Perturbation Requirement Statistical correlation phase 重整 parameter 顶点 对称

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-12 08:43