摘要翻译:
在离散动力系统的框架下,分析了乔治·索罗斯为其自反性理论提出的数学模型。我们表明了不动点概念对于解释由其认知和操纵功能所支配的自反系统的行为的重要性。这两个函数之间的相互关系诱导出具有不同特征的不动点,这些不动点又产生了各种系统行为,包括索罗斯理论中所谓的“先繁荣后萧条”现象。
---
英文标题:
《Mathematical analysis of Soros's theory of reflexivity》
---
作者:
C.P. Kwong
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
---
英文摘要:
The mathematical model proposed by George Soros for his theory of reflexivity is analyzed under the framework of discrete dynamical systems. We show the importance of the notion of fixed points for explaining the behavior of a reflexive system governed by its cognitive and manipulative functions. The interrelationship between these two functions induces fixed points with different characteristics, which in turn generate various system behaviors including the so-called "boom then bust" phenomenon in Soros's theory.
---
PDF链接:
https://arxiv.org/pdf/0901.4447


雷达卡



京公网安备 11010802022788号







