摘要翻译:
证明了级数${\bf q}(z)=z\exp({\bf G}(z)/{\bf F}(z))$的Taylor系数是整数,其中${\bf F}(z)$和${\bf G}(z)+\log(z){\bf F}(z)$是某些具有极大单幂单数的超几何微分方程在$z=0$处的具体解。我们还讨论了求最大整数$u$的问题,使得Taylor系数$(z^{-1}{\bf q}(z))^{1/u}$仍然是整数。结果证明了加权射影空间中Calabi-Yau完全交的镜像映射的Taylor系数的许多积分结果,改进和完善了Lian和Yau以及Zudilin的结果。特别地,我们证明了Zudilin关于这些镜像映射的一般的“完整性”猜想。本研究的进一步结果是确定了Dwork-Kontsevich序列$(u_N)_{n\ge1}$,其中$u_N$是最大的整数,使得$q(z)^{1/u_N}$是一个具有整数系数的级数,其中$q(z)=\exp(F(z)/g(z))$,$F(z)=\sum_{m=0}^{\infty}(Nm)!z^m/m!^n$和$g(z)=\sum_{m=1}^{\infty}(H_{Nm}-H_m)(Nm)!Z^m/m!^n$,其中$h_n$表示$n$次调和数,条件是没有素数$p$和整数$n$,使得$h_n-1$的$p$-adic值严格大于3。
---
英文标题:
《On the integrality of the Taylor coefficients of mirror maps》
---
作者:
Christian Krattenthaler (Universit\"at Wien) and Tanguy Rivoal (CNRS,
Universit\'e de Grenoble)
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We show that the Taylor coefficients of the series ${\bf q}(z)=z\exp({\bf G}(z)/{\bf F}(z))$ are integers, where ${\bf F}(z)$ and ${\bf G}(z)+\log(z) {\bf F}(z)$ are specific solutions of certain hypergeometric differential equations with maximal unipotent monodromy at $z=0$. We also address the question of finding the largest integer $u$ such that the Taylor coefficients of $(z ^{-1}{\bf q}(z))^{1/u}$ are still integers. As consequences, we are able to prove numerous integrality results for the Taylor coefficients of mirror maps of Calabi-Yau complete intersections in weighted projective spaces, which improve and refine previous results by Lian and Yau, and by Zudilin. In particular, we prove the general ``integrality'' conjecture of Zudilin about these mirror maps. A further outcome of the present study is the determination of the Dwork-Kontsevich sequence $(u_N)_{N\ge1}$, where $u_N$ is the largest integer such that $q(z)^{1/u_N}$ is a series with integer coefficients, where $q(z)=\exp(F(z)/G(z))$, $F(z)=\sum_{m=0} ^{\infty} (Nm)! z^m/m!^N$ and $G(z)=\sum_{m=1} ^{\infty} (H_{Nm}-H_m)(Nm)! z^m/m!^N$, with $H_n$ denoting the $n$-th harmonic number, conditional on the conjecture that there are no prime number $p$ and integer $N$ such that the $p$-adic valuation of $H_N-1$ is strictly greater than 3.
---
PDF链接:
https://arxiv.org/pdf/0709.1432


雷达卡



京公网安备 11010802022788号







