楼主: 何人来此
316 0

[数学] 关于三维中Hacon和McKernan的一个猜想 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-7 11:47:50 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们证明了存在一个泛常数$R_3$,使得如果$X$是非负Kodaira维数的三倍光滑射影,则线性系统$R K_X$允许一个与Iitaka纤维化一样快的纤维化,并且是充分可除的。这对Hacon和McKernan在三重条件下的一个猜想给出了肯定的回答。Viehweg和Zhang使用不同的方法在这些方面发布了一个更强的结果。
---
英文标题:
《On a conjecture of Hacon and McKernan in dimension three》
---
作者:
Adam Ringler
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We prove that there exists a universal constant $r_3$ such that if $X$ is a smooth projective threefold over $\mathbb{C}$ with non-negative Kodaira dimension, then the linear system $|r K_X|$ admits a fibration that is birational to the Iitaka fibration as soon as $r \geq r_3$ and sufficiently divisible. This gives an affirmative answer to a conjecture of Hacon and McKernan in the case of threefolds. Viehweg and Zhang have posted a stronger result along these lines using different methods.
---
PDF链接:
https://arxiv.org/pdf/0708.3662
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:con HAC MCK mathematics affirmative 证明 肯定 是非 纤维化 猜想

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 19:27