摘要翻译:
本文的目的是解决从有缺失值的训练数据中学习布尔函数的问题。我们提出了一种脑算法的扩展,称为U-BRAIN(不确定性管理批处理相关性人工智能),用于从部分真值表中学习DNF布尔公式,可能存在不确定值或缺失位。该算法是通过引入模糊集来管理不确定性,从大脑中获得的。在没有丢失比特的情况下,算法简化为原始脑。
---
英文标题:
《A fuzzified BRAIN algorithm for learning DNF from incomplete data》
---
作者:
Salvatore Rampone, Ciro Russo
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
一级分类:Mathematics 数学
二级分类:Logic 逻辑
分类描述:Logic, set theory, point-set topology, formal mathematics
逻辑,集合论,点集拓扑,形式数学
--
---
英文摘要:
Aim of this paper is to address the problem of learning Boolean functions from training data with missing values. We present an extension of the BRAIN algorithm, called U-BRAIN (Uncertainty-managing Batch Relevance-based Artificial INtelligence), conceived for learning DNF Boolean formulas from partial truth tables, possibly with uncertain values or missing bits. Such an algorithm is obtained from BRAIN by introducing fuzzy sets in order to manage uncertainty. In the case where no missing bits are present, the algorithm reduces to the original BRAIN.
---
PDF链接:
https://arxiv.org/pdf/1002.4014


雷达卡



京公网安备 11010802022788号







