摘要翻译:
本文介绍了支持向量机(SVM)的一种新的应用,它是一种重要的机器学习算法,用于实时确定衰退的开始和结束。临近预报,即“预测”当前的情况,因为关于它的全部信息要到以后才能获得,是衰退的关键,衰退只是在事实发生几个月后才确定。我们证明了支持向量机对这一任务具有良好的预测性能,并给出了实现细节,以方便其在经济和金融领域的类似问题中的应用。
---
英文标题:
《Nowcasting Recessions using the SVM Machine Learning Algorithm》
---
作者:
Alexander James, Yaser S. Abu-Mostafa, Xiao Qiao
---
最新提交年份:
2019
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
We introduce a novel application of Support Vector Machines (SVM), an important Machine Learning algorithm, to determine the beginning and end of recessions in real time. Nowcasting, "forecasting" a condition about the present time because the full information about it is not available until later, is key for recessions, which are only determined months after the fact. We show that SVM has excellent predictive performance for this task, and we provide implementation details to facilitate its use in similar problems in economics and finance.
---
PDF链接:
https://arxiv.org/pdf/1903.03202


雷达卡



京公网安备 11010802022788号







