摘要翻译:
本文讨论了形式为$g(X_T)$的随机变量的分数光滑性的概念,其中$x=(X_T)_{t\in[0,t]}$是一个确定的扩散过程。我们回顾了与实插值理论的联系,给出了这个概念的例子和应用。在随机金融中的应用主要涉及离散时间套期保值误差的分析。我们在结束审查时指出了一些进一步的发展。
---
英文标题:
《Fractional smoothness and applications in finance》
---
作者:
Stefan Geiss, Emmanuel Gobet
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
This overview article concerns the notion of fractional smoothness of random variables of the form $g(X_T)$, where $X=(X_t)_{t\in [0,T]}$ is a certain diffusion process. We review the connection to the real interpolation theory, give examples and applications of this concept. The applications in stochastic finance mainly concern the analysis of discrete time hedging errors. We close the review by indicating some further developments.
---
PDF链接:
https://arxiv.org/pdf/1004.3577


雷达卡



京公网安备 11010802022788号







